Hierarchical interconnections in the nano-composite material bone: Fibrillar cross-links resist fracture on several length scales

Georg E. Fantner a,*, Olexandr Rabinovych b, Georg Schitter a, Philipp Thurner a, Johannes H. Kindt a, Marquesa M. Finch a, James C. Weaver c, Laura S. Golde a, Daniel E. Morse c, Everett A. Lipman a, Ivo W. Rangelow b, Paul K. Hansma a

a University of California Santa Barbara, Department of Physics, Santa Barbara, CA 93106, USA
b University of Kassel, Institute for Microstructuretechnologies and Analytics, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
c University of California Santa Barbara, Institute for Collaborative Biotechnologies, Santa Barbara, CA 93106, USA

Received 7 October 2005; accepted 12 October 2005
Available online 15 December 2005

Abstract

Bone is a complex and very important multi-constituent bio-composite. In this work, we focus on the arrangement of bone constituents from the nanoscopic to the microscopic scale, and investigate the influence of their arrangements on the fracture mechanisms of the whole composite. We find that bone, on the nanoscopic scale, consists of mineralized collagen fibrils held together by a non-fibrillar organic matrix, which results in a primary failure mode of delamination between mineralized fibrils. In turn, these mineralized fibrils form one of three types of filaments that span microcracks in fractured bone samples, possibly resisting the propagation of these cracks.

Keywords: Bone; AFM; Mechanical properties; Non-collagenous proteins; Filaments; Collagen; Fibrils

1. Introduction

Bone is one of the most important and most complex biominerals. It has become the focus of intensive study in light of the rising average population age and associated bone diseases. In recent years, it has become increasingly clear that, in addition to the insights achieved in the biological sciences and medicine, information on the nanoscopic architecture of the bone is needed to understand and predict bone fracture, e.g. [1]. Bone consists mainly of mineralized collagen fibrils. The collagen fibrils, being the main organic component in bone, are reinforced with nanoscale hydroxyapatite particles [2–8]. This results in a mineral reinforced protein fibril of \(\approx 50–100 \) nm diameter. These fibrils are the elementary building block for the large variety of bones in the body. To facilitate the function of the specific bone, they are arranged in several possible patterns [9].

In addition to its biomedical significance, bone has been used as a model for many artificial bio-ceramic composites [10,11]. In many of these artificial composites, a combination of a soft polymer matrix reinforced with stiff particles is used as an approximation of the interaction between collagen and hydroxyapatite. Such materials are based on the crystal–polymer interactions on the molecular and nanoscopic level. In this paper, we present additional strength-increasing mechanisms in bone that may add to the quality of artificial bio-mineral composites.

2. Materials and methods

Trabecular bone samples were cut from fresh bovine and human vertebrae. Samples were frozen and cut on a band saw into cubes approximately \(4.5 \times 4.8 \times 4.0 \) mm, where the shortest dimension was in the direction of the
spinal column. The marrow was removed from the trabeculae using a pressurized stream of phosphate buffered saline (PBS) solution or water.

A buffer (40 mM CaCl, 110 mM NaCl, 10 mM HEPES, brought to pH 7.0 by addition of small amounts of 1.0 M NaOH) was used for storage.

2.1. Atomic force microscopy (AFM)

Single trabeculae were extracted from human and bovine bone cubes under a dissecting microscope and mounted on steel sample discs with 2-ton epoxy. The samples were then rinsed in de-ionized water. Remaining water was removed by placing the mounted samples in a centrifuge tube on top of a Kimwipe. The samples were centrifuged for a few seconds after which all samples were placed in a vacuum desiccator and evacuated to below 1 Torr. Samples were imaged in contact mode (Fig. 1A) or tapping mode (Fig. 1B) under nitrogen atmosphere.

2.2. Scanning electron microscopy (SEM)

Trabecular bone cubes were polished and cleaned with pressurized water to remove loose residues. The bone samples were compressed (under PBS solution) in a small, SEM-compatible vise that fits in the chamber of an FEI (XL 40 Sirion) scanning electron microscope. After compression, residual salts were removed by immersing the clamped sample in a Milli-Q (Millipore-purified) water-supplied flow-through system. The samples were then dried in a vacuum oven (10⁻³ Torr, 30 °C) and gold/palladium-coated by sputtering for SEM imaging.

Human trabecular bone was purchased from a tissue bank and prepared using the same procedure as used for the bovine. All the images chosen for this paper are representative examples of features observed several times in different samples of human as well as bovine bone.

2.3. Environmental SEM

Bone samples were extracted from bovine vertebrae in the same way as for the conventional SEM images. Samples were then cut into 1 mm thick slices and sanded with 1200 grit sandpaper. The sample was placed in a custom made holder in which it could be loaded while mounted on the stage of an environmental scanning electron microscope (ESEM, Philips XL30). The samples were kept in storage buffer and the uncoated samples were loaded in the ESEM while being moist. In the ESEM, excess water was evaporated through the vacuum system. The sample was cooled to 3 °C in an environment of close to 100% humidity. The preloaded sample was imaged to find a suitable crack with bridging fibrils. To further strain the bone, the chamber of the ESEM was vented and the sample was rewetted. The strain was increased by tightening a clamping screw in the custom sample holder. After blotting the sides of the sample with a Kimwipe and evaporation of the excess water in the vacuum chamber of the ESEM, the crack was located again and imaged.

2.4. Nanojet

Nanojet (Nanonozzle Plasma JET Microfabrication Tool) is a new tool for nanoscale localized chemical etching by gaseous species (free radicals) [12,13]. Radicals are created from a mixture of two gases (SF₆ and O₂) within a cavity, powered by a microwave generator, operating at 100 W and 2.45 GHz (Electro-medical supplies). The radicals are transported through a capillary, which is tapered to form a nanonozzle. The electrically neutral radicals are forced in the direction of the substrate by a pressure gradient along the tube. In contrast to kinetic etch techniques such as focus ion beam (FIB) which operate with high-energy ions (5–100 keV), the chemically active radicals in Nanojet have thermal energy and therefore do not mechanically damage the bone surface. Chemical etching of the substrate takes place at the surface only, leading to high selectivity of the etching with respect to different materials or their densities in the composite.

Due to the directionality of the molecular beam emerging from the high aspect ratio nanonozzle, a localized etching can be performed. By scanning the substrate under the nozzle, a pattern can be generated with nearly the same resolution as the nozzle diameter.

We etched the sample for 1 h with a nozzle opening of 300 nm, which was positioned 100 nm above the sample. The sample was imaged by SEM after the first etch to observe the changes on the bone surface. To find the same place on the bone surface after each treatment and to see the evolution of the surface morphology, the surface was mechanically marked, which made it easily detectable during the SEM imaging. The formed topological details were also used to navigate and find the same surface area.

The etch procedure was repeated three times, where after each etch, the same spot was imaged. For SEM imag-
ing we used a cold field emission electron microscope from Hitachi, Type 4000. To achieve high resolution images without the need for a metal coating, the sample was covered with metal mesh grid, in order to avoid excessive charging of the sample while imaging.

3. Results

Fig. 1A shows an atomic force microscopy image of collagen fibrils on the outside of human bone, showing the characteristic 67 nm banding periodicity on the surface of the fibril [14–16]. These fibrils are similar to fibrils observed on the outside of bovine bone [17]. Fig. 1B shows an AFM image of a fractured surface of bovine bone at the same magnification as Fig. 1A, showing collagen fibrils coated with hydroxyapatite particles [5,17,18]. These mineralized collagen fibrils form the basic building block of bone. In bone, they are held together by a non-fibrillar organic matrix as can be seen in Fig. 2 [19]. The amount of this non-fibrillar organic matrix and the degree of mineralization can vary strongly between bone samples and even within the same sample [20–23]. Fig. 2 shows SEM images of osteoporotic human trabecular bone from spots within a 2 × 2 mm area and reveals great variations in the amount of non-fibrillar organic matrix. Fig. 2A shows mineralized collagen fibrils that are interconnected with a large amount of unmineralized, non-fibrillar organic matrix. The fibrils are completely coated but the mineral particles can be seen slightly through the smooth layer. Fig. 2B shows an area on the same sample with a large amount of unmineralized collagen fibrils showing the characteristic 67 nm banding pattern. Between the collagen fibrils, particles can be seen, but the fibrils are not as fully mineralized as the fibrils in Fig. 1B. Fig. 2C shows an area where little to no non-fibrillar organic matrix interconnects the mineralized fibrils. The fibrils are packed loosely, with many voids between the fibrils compared to the fibrils in Fig. 2A. Fig. 2D shows a crack formation in an area with a large amount of non-fibrillar organic matrix. The organic matrix forms filaments that span the small microcrack, putatively resisting the growth and propagation of the microcrack [19].

To investigate whether there are mineralized collagen fibrils underneath the non-fibrillar matrix in Fig. 2, and whether this non-fibrillar matrix is indeed organic, we used a novel nanostructuring tool (Nanojet) to selectively remove the organic layer [12]. Nanojet uses a localized beam of thermal reactive radicals to selectively remove organic components. Fig. 3A shows the schematic principle of this instrument. Using the beam of reactive radicals, a fracture surface of cortical bone was etched for 1 h and then imaged by SEM. This procedure was repeated a total of three times, where after each etch, the same spot was imaged. The resulting SEM images after 1, 2, and 3 h of etching are shown in Fig. 3B, C and D, respectively. In Fig. 3B, the superficial organic layer has been removed by Nanojet and the crystals underneath can be seen. As more organic material is removed, more of the fibrillar structure is revealed (Fig. 3C). After three hours of etching, the organic material has been removed deep into the bone.
The structures in Fig. 3D remain fibrous even though most of the organic material has been removed.

The fibrous architecture [24] and the condition of the organic fibrils [25] of bone has profound influence on the formation and orientation of microcracks in bone, which are believed to be an important precursor for bone failure [22,26,27]. Fig. 4A shows the tip of a delamination crack in bovine trabecular bone. The crack forms along the direction of the mineralized fibrils which are parallel to the surface of the trabeculi. Within the crack, the fracture surface has a fibrous appearance and filaments can be seen to span the extent of the crack (Fig. 4B). Such filaments have been reported in human cortical bone [28] and it has been suggested that they contribute to the fracture toughness of bone [29]. Most of these filaments originate from previously parallel-laying fibrils. When a crack is formed, the parallel mineralized collagen fibrils must be separated (Fig. 4C). The binding between the mineralized fibrils leads some fibrils to be connected to both sides of the crack and thereby to form filaments between the two crack surfaces which might resist the further growth of the crack. These mineralized collagen fibrils are the main filament type that span microcracks, representing ≈95% of all the cross-linking filaments we observed (Fig. 4E, filament 1). Another type of filament is unstructured, forming stringy cross-links as seen in Fig. 4E, filament 2. This type of filament may consist of the same non-fibrillar organic matrix that holds the mineralized collagen fibrils together (Fig. 2A and B).

The third type of filament is represented by unmineralized collagen fibrils, Fig. 4E, filament 3. These fibrils show the characteristic 67 nm banding pattern of collagen (see white arrows in Fig. 4F). In addition to this typical banding pattern, a second smaller banding pattern can be seen. This banding pattern has a periodicity of ≈22 nm and is similar to a small banding pattern in collagen recently found by AFM [15].

To open an existing crack, the cross-linking filaments must be overcome. This could be accomplished through: (1) delamination of the fibrils from one surface (as suggested by Fig. 4D) or (2) rupture of the fibrils. Fig. 5A shows a crack in bovine trabecular bone with mineralized fibrils spanning the gap, in an image taken with environmental SEM. Fig. 5B shows a higher magnification of a bundle of fibrils that span the crack. After additional load is applied on the sample, the crack opens, and the fibril bundle breaks (Fig. 5C).

On the microscopic scale, mineralized collagen fibrils can have several arrangements, depending on the type and the specific function of the bone they form [30,31]. In trabecular bone the fibrils are arranged to form a bi-continuous network of trabeculae and voids which are filled by bone marrow (see Fig. 6). This type of bone is found mainly in vertebrae and long bones. Fig. 7 shows a bovine trabecular bone sample fractured in tension parallel to the main fibrillar plane. The mineralized fibrils that form the trabeculae are generally oriented along the shape of the trabeculae (Fig. 7A), which results in an anisotropy of the mechanical properties of the trabeculae and the trabecular bone as a whole [32–35]. On the fracture surface of Fig. 7B, the fibrils have delaminated in bundles, which consist of several mineralized collagen fibrils. The majority of the fibrils in the bundles are parallel to each other; however, some fibrils are orthogonal to the bundles and interconnect the bundles (Fig. 7C). The orthogonal bundles appear to also consist of mineralized fibrils and could act as resisting elements against the delamination (Fig. 7D).

4. Discussion

The fibrillar multi-component structure of bone results in cross-links on several size scales which consist of different materials. The cross-links on the nano scale between the mineralized fibrils consist predominately of non-miner-
alized organic material, whereas the cross-links between the microcracks and bundles of fibrils consists predominately of mineralized collagen fibrils. Whether and how these cross-links contribute to the mechanical properties of bone remains unclear. It has been proposed that collagen fibrils that span between crack surfaces could increase the fracture toughness of bone [29]. In that work, Yeni and Fyhrie hypothesize that collagen fibrils that span microcracks exert a crack closure stress which resists opening of the crack and thereby reduces the probability that a crack will grow. Recently, Nalla et al. [28] reported uncracked ligament bridges in cortical human bone, where they show some evidence that these ligaments (which consist of many fibrils) act as a toughening mechanism in bone. The three types of filament bridges in Fig. 4E are all possible candidates for such a toughening mechanism. Since the majority of the bridging filaments are mineralized collagen, these fibrils will likely have the largest contribution to this mechanism. In this case, the bonding between the mineralized fibrils is a determining factor of the effectiveness of the bridging mechanism [29].

There are several possible mechanisms by which the mineralized collagen fibrils that span cracks could be held to the sides of the microcrack. As can be seen in Fig. 4D, the mineralized fibrils can be entangled with the fibrils of the bulk material. The rough texture of the fibril could increase the strength of the entanglement through interfibrillar friction. Alternatively or in combination with this, the material that is between the mineralized collagen fibrils in Fig. 2 could also be partially responsible for keeping the mineralized fibrils attached to both sides of an opening microcrack (see Fig. 4). As shown in Fig. 2A and D, the bonding between the mineralized fibrils seems to be achieved by an unmineralized non-fibrillar organic matrix.

Fig. 5. Fibrils span cracks in bovine trabecular bone and break after the strain is increased. (A) Environmental SEM image of a crack in bovine trabecular bone at 3 °C and ≈100% humidity. Several fibrils span the crack. (B) Higher magnification view of a bundle of fibrils that span the gap. (C) After the strain on the bone was increased, the crack opened and the fibril was broken.

Fig. 6. Overview images of human trabecular bone. The bone consists of a bi-continuous network of trabeculae and voids (normally filled with marrow in vivo). Parts A and B show different magnifications.

Fig. 7. SEM images of fractured bovine trabecular bone: (A) Fracture surface reveals fibrous structure in the bone, following the shape of the outside trabecular surface. (B) Fracture occurs by separation of bundles of coated fibrils. (C) Filaments are linked to each other in several places by cross-connections. The bridges have the same appearance as the fibrils of the bundles. (D) The cross-links are on both sides embedded in the main fibrils. These bridges could be preexisting cross-links or could be fibrils that were previously parallel to the others and are now part of two bundles.
The filaments that span the crack in Fig. 2D suggest that the non-fibrillar organic matrix resists the opening of the crack. This non-fibrillar organic matrix would thereby act as a glue to hold the mineralized fibrils together [19]. The composition of this “glue” is unclear. We hypothesize that it consists of any of the various bone associated polymers such as proteoglycans [36–39], non-fibrillar collagen [36] or bone sialoprotein [40].

The function of the organic matrix as a glue is supported by findings of Thompson et al. [41], who report that sacrificial bonds are present within the bone matrix. Such sacrificial bonds have also been shown for other bio-mineral systems such as abalone nacre, where the organic material glues aragonite plates together [42], contributing to the measured >3000-fold increase in fracture toughness of the composite relative to the mineral alone. These sacrificial bonds are weak, reformable bonds that increase the energy required to stretch molecules and thereby increase the energy that is required to break the molecules. When strain on the material is removed, these sacrificial bonds can reform; they therefore provide a mechanism for repeatable energy dissipation.

We hypothesize that the glue between the mineralized fibrils in Fig. 2 serves a similar purpose. In order for the mineralized fibrils to separate, these glue bonds between the mineralized fibrils have to be broken. This mechanism could be reversible if the glue bonds reform when the microcrack relaxes, as suggested by Thompson et al. [41] for the sacrificial bonds in bone and Fantner et al. [19] for the adhesion between small bone pieces with fibrils as a model for microcracks. The effectiveness of the mineralized fibrils that span the cracks to prevent crack propagation would in that case strongly depend on the condition of the non-fibrillar organic matrix. Degradation of this matrix would result in a decreased fracture toughness of the whole composite. Genetic knock-out studies in rats have shown that if the animal can no longer produce biglycans, a possible constituent of the organic matrix, the bone becomes weaker [43]. However, the inability to produce biglycans also affects many other parameters that contribute to bone fracture, so the connection between biglycans and the organic matrix is speculative.

We conclude that bone has a variety of cross-links on various size scales. These cross-links could significantly contribute to the fracture toughness of bone. We hypothesize that mineralized fibrils are bonded together with a non-fibrillar organic matrix which might act as glue. These mineralized fibrils in turn span microcracks and crack tips, where they presumably resist the propagation of the cracks. The details of this mechanism still have to be investigated. Future investigations into the composition of the non-fibrillar organic matrix will be necessary to better understand bone failure from the molecular to the macroscopic scale. The results of this paper suggest that there are multiple orders of complexity and strategies used to give bone its remarkable properties, which, when understood, may be useful to make higher performance artificial nano-composite materials.

Acknowledgements

The authors thank Herbert Waite, Simcha Frieda Udwin, and Patricia Turner for their suggestions and fruitful discussions. We thank Gelson’s Markets, Santa Barbara, especially Phil Vega for supplying fresh bovine vertebrae. José Saleta for assistance with ESEM experiments and Jan Lövander for assistance with high resolution SEM images.

Research supported by: NASA University Research, Engineering and Technology Institute on Bio Inspired Materials under Award No. NCC-1-02037, NIH under Award Number GM65354, NSF under Award Number DMR-9988640, the Institute for Collaborative Biotechnologies through Grant DAAD19-03-D-0004 from the US Army Research Office, Veeco Instruments, the UCSB Materials Research Laboratory under NSF Award DMR00-80034, the NOA National Sea Grant College Program, US Department of Commerce (NA36RG0537, Project R/MP-92) through the California Sea Grant College System. This work made use of MRL Central Facilities supported by the MRSEC Program of the National Science Foundation under Award No. DMR00-80034. ESEM imaging was done at MEIAF (Micro Environmental Imaging and Analysis Facility), Donald Bren School of Environmental Science and Management, funded by NSF 9977772.

G.F. thanks the Austrian Academy of Science for a DOC scholarship. G.S. thanks the Austrian Science Fund for support under Project J2395-N02. P.T. thanks the Swiss National Fund. PBEZ2–105116 M.F. thanks the UCSB RISE Program. L.G. thanks the UC LEADS and UCSB RISE Programs.

References

