Small cantilevers for force spectroscopy of single molecules

Mario B. Viani, a) Tilman E. Schäffer, and Ami Chand
Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106

Matthias Rief and Hermann E. Gaub
Lehrstuhl für Angewandte Physik, Ludwig-Maximilians-Universität, 80799 München, Germany

Paul K. Hansma
Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106

(Received 7 January 1999; accepted for publication 6 May 1999)

We have used a simple process to fabricate small rectangular cantilevers out of silicon nitride. They have lengths of 9–50 μm, widths of 3–5 μm, and thicknesses of 86 and 102 nm. We have added metallic reflector pads to some of the cantilever ends to maximize reflectivity while minimizing sensitivity to temperature changes. We have characterized small cantilevers through their thermal spectra and show that they can measure smaller forces than larger cantilevers with the same spring constant because they have lower coefficients of viscous damping. Finally, we show that small cantilevers can be used for experiments requiring large measurement bandwidths, and have used them to unfold single titin molecules over an order of magnitude faster than previously reported with conventional cantilevers. © 1999 American Institute of Physics.

I. INTRODUCTION

Since its invention by Binnig, Quate, and Gerber in 1986, atomic force microscopy (AFM) has proven to be an excellent tool for imaging a wide class of systems such as semiconductors, minerals, polymers, and biomaterials.1–3 More recently, the AFM has been used to do single molecule force spectroscopy on a wide range of molecules.3–6 Force spectroscopy can provide structural information about macromolecules, as well as information about the energy landscape of molecular bonds.7 Increasing the dynamic range and sensitivity of the AFM in force spectroscopy experiments will provide a more useful tool for probing single molecules.

In the AFM, forces are measured by monitoring the deflection of a flexible cantilever. In the earliest AFMs, cantilevers were fashioned from millimeter sized hand-cut aluminum strips. Today micromachining techniques are used to mass produce well defined cantilevers with dimensions on the order of 100 μm.8,9 Decreasing cantilever dimensions to the order of microns gives much higher resonant frequencies than larger cantilevers (>500 kHz in air), while simultaneously providing the same spring constants10–12 (<100 mN/m). Therefore small cantilevers should allow for faster measurements. Furthermore, recent work by Gittes and Schmidt13 has shown that, in principle, it is possible to lower the minimum detectable force a cantilever can measure by decreasing the cantilever’s coefficient of viscous damping. Because smaller cantilevers have lower coefficients of viscous damping than their larger counterparts, they should be able to measure smaller forces.

We have used a simple process to fabricate arrays of small rectangular cantilevers out of low stress silicon nitride. The cantilevers are 9–50 μm long, 3–5 μm wide, and 86 and 102 nm thick. We have characterized these cantilevers through their thermal spectra in both air and water, and demonstrate that smaller cantilevers can measure smaller forces than larger cantilevers with the same spring constant. We also show small cantilevers can be used for experiments requiring a greater measurement bandwidth, and have used them to unfold single titin molecules with pulling speeds over an order of magnitude faster than previously performed with conventional cantilevers.

II. CANTILEVER FABRICATION

Typical materials used for micromachining cantilevers are silicon and silicon nitride. However, these materials have low reflectivity, making them a poor choice for optical detection schemes such as optical beam deflection, because low light levels at the detector can decrease the signal to noise ratio (SNR) of the measurement. Thus, many commercially available cantilevers made from silicon or silicon nitride are coated with metals such as gold or aluminum to increase reflectivity. Unfortunately, this has the undesirable effect of creating a temperature sensitive “bimaterial” strip that can give rise to spurious signals due to small changes in room temperature. This effect becomes especially large for smaller cantilevers where the thickness of the metal layer becomes comparable to the cantilever thickness.14 A possible alternative is to make cantilevers solely out of metal. However, as we have reported elsewhere, it is difficult to control the stress in thin metal films that causes most metal cantilevers to bend.15 One way to avoid these problems is to add a metallic reflector pad to the cantilever end in order to maximize the reflectivity while minimizing sensitivity to temperature changes.

We fabricated small silicon nitride cantilevers both with and without gold reflector pads at their ends. In practice we found that the SNR of force measurements made with the cantilevers without pads (spring constants <100 mN/m) is

a)Electronic mail: viani@physics.ucsb.edu
limited by the thermal motion of the cantilevers themselves and not by detection noise. Therefore the addition of metal pads to increase reflectivity (and signal) does not increase the sensitivity of these cantilevers.17 However, another problem that arises with nonreflective cantilevers is that light can pass through the cantilever and reflect off the sample back to the detector, where it interferes with light reflected from the cantilever itself. This interference causes a periodic signal that is dependent on the cantilever-sample separation18 and can be much larger than signals caused by real deflections of the cantilever. The cantilevers with pads at their ends reduced light transmission through the cantilever and therefore minimized interference effects without significantly increasing cantilever sensitivity to temperature changes.

The process we used to fabricate small cantilevers is outlined in Fig. 1. First, a thin layer of low stress silicon nitride is deposited by low-pressure chemical vapor deposition onto a double sided polished, 300-μm-thick, (100) oriented single crystal silicon wafer [Fig. 1(a)]. Next, a deep etch pattern is defined in the silicon nitride layer on the non-cantilever side of the wafer via photolithography and reactive ion etching. This pattern serves to define an array of chips held into a frame with a single silicon tab at the back of each chip. Next, KOH is used to anisotropically etch through the silicon wafer until a thickness of about 10–15 μm remains as shown in Fig. 1(b). Then the cantilever pattern is defined in the silicon nitride layer on the non-cantilever side of the wafer via photolithography and reactive ion etching. This pattern serves to define an array of chips held into a frame with a single silicon tab at the back of each chip. Next, KOH is used to anisotropically etch through the silicon wafer until a thickness of about 10–15 μm remains as shown in Fig. 1(b). Then the cantilever pattern is defined in the silicon nitride layer on the non-cantilever side of the wafer via photolithography and reactive ion etching [Fig. 1(c)] and 3–5 nm of chrome followed by 20–100 nm of gold is evaporated onto the cantilever side of the wafer and patterned into pads at the ends of the cantilevers [Fig. 1(d)]. Next, 20–60 nm of plasma-enhanced-chemical-vapor-deposited silicon nitride is deposited on the cantilever side of the wafer to passivate the exposed silicon. Finally, the cantilevers are released by etching the remaining 10–15 μm of silicon in KOH and by removing the plasma-enhanced-chemical-vapor-deposited silicon nitride with buffered HF19 as shown in Fig. 1(e).

Figure 2(a) is a scanning electron microscopy (SEM) micrograph showing the top view of two small rectangular cantilevers with integrated reflector pads. The cantilevers are 5 μm wide, 86 nm thick, and 27 and 32 μm long. The pads are nominally 100 nm thick. (b) A SEM micrograph showing a perspective view of an array of cantilevers without pads. The tips were grown by electron beam deposition. The cantilevers are 5 μm wide, 102 nm thick, and 14–24 μm long.

III. CHARACTERIZING SMALL CANTILEVERS

To characterize the cantilevers we measured their thermal deflection spectra with a prototype AFM that employs an optical beam detection system. The prototype AFM was designed to be used with small cantilevers by employing high numerical aperture optics to achieve a focused spot size of 1.6 μm in diameter.12,21 Measurements were taken at room temperature in both air and water. For spectra taken in air, the simple harmonic oscillator amplitude response function $A(ν)$ was fit to the data

$$A(ν) = A_dG(ν),$$

where
\[G(v) = \frac{v_0^2}{\sqrt{(v_0^2 - v^2)^2 + \frac{v_0^2 v^2}{Q^2}}} \]

and where \(v_0 \) is the resonant frequency, \(Q \) is the quality factor, and \(A_{dc} \) is the cantilever amplitude at zero frequency. Specifically, only the data on the peak of the first mode of vibration are fit because these data are clearly dominated by the thermal motion of the cantilever and not by other noise sources. From the fits to the thermal spectra taken in air, we were able to calculate \(v_0 \), \(Q \), and \(A_{dc} \). Then we used the equipartition theorem to calculate spring constants \(k \) in a method that has been described in detail previously. Finally, we calculated the coefficient of viscous damping \(R \) by using the relation \(R = k/(2\pi v_0 Q) \). We also used the thermal spectra taken in water to characterize the cantilevers in a liquid environment. However, it has been shown that the analogy with a simple harmonic oscillator is only appropriate in the limit of small dissipative effects, or more specifically when the quality factor \(Q \) is much greater than one. Although this condition was usually satisfied for cantilevers in air, cantilevers in water had quality factors of order one. Therefore, the simple harmonic oscillator response function can only provide an estimate of the resonant frequencies for cantilevers in liquid.

Figure 3(a) shows the measured resonant frequencies in both air and water plotted as a function of length for an array of rectangular cantilevers which are 5 \(\mu m \) wide and 86 nm thick. The fit to the expected \((\text{length})^{-2} \) dependence is also plotted. Figure 3(b) shows the measured spring constants for the same set of cantilevers as well as the fit to the expected \((\text{length})^{-3} \) dependence. Finally, Fig. 3(c) shows the coefficient of viscous damping for these same cantilevers as measured in air.

IV. MINIMUM DETECTABLE FORCE

The smallest force an AFM can measure at room temperature is limited by both noise from the detection system used to monitor the cantilever motion and by thermal motion of the cantilever itself. In general, the SNR of a measurement made with bandwidth \(B \) of an oscillating force with amplitude \(F(v) \) will have the form:

\[\text{SNR} = \frac{F(v)}{k G(v)} \sqrt{\frac{4 k_B T R B}{k^2} G^2(v) + \text{(Detector Noise)}^2} \]

where \(k_B \) is Boltzmann’s constant and \(T \) is the temperature of the measurement. The first term in the denominator is thermal noise as described by the fluctuation-dissipation theorem, which requires any system that has energy dissipation \(R \) to also experience fluctuations. In general, the energy dissipation \(R \) will be system dependent and can be caused by many different mechanisms such as viscous damping, acoustic reradiation, or magnetic eddy-current damping. In the case of a simple harmonic oscillator, viscous damping causes all energy dissipation; therefore \(R \) is equal to the coefficient of viscous damping as defined previously. The second term in the denominator is a generalized frequency dependent detector noise (with units of displacement), which has many contributions including photonic shot noise for optical detection schemes, amplifier noise, and \(1/f \) noise. In general, detection noise is independent of the spring constant of the cantilever, therefore the signal to noise ratio will be maximized by decreasing the spring constant \(k \) to a point where the thermal noise dominates the detector noise. By taking the
so that the coefficient of viscous damping for these experiments is to modify the cantilever dimensions. In order to determine the smallest low frequency force that these cantilevers can measure we immersed them in water and recorded the deflection signal. The deflection signal was low pass filtered at 3 kHz and then multiplied by the measured spring constant of the cantilever. Figure 4(b) shows the measured force in pN for both cantilevers. The standard deviation of the force gives a noise level of 7.4 pN for the large cantilever and 1.3 pN for the small cantilever. The noise level for both cantilevers is dominated by the cantilever’s thermal motion (detector noise contributed to less than 5% of the total noise in both cases). Therefore, the improved sensitivity of the smaller cantilever is believed to be a direct consequence of a decrease in the coefficient of viscous damping R.

It is important to note that for actual force spectroscopy experiments, the minimum detectable force will be somewhat different than reported here for two reasons. First, the measurements presented here were taken with the cantilevers far from the sample surface. The noise level should increase for small separations as the coefficient of viscous damping increases from fluid squeezing effects. Second, for cases where the effective spring constant of the probed molecule is comparable to the spring constant of the cantilever, effects of the molecule will play a role in the noise level.

V. MEASUREMENT BANDWIDTH

In addition to being able to measure smaller forces, small cantilevers can also be used for force measurements with greater bandwidth. In general, a sinusoidal force with amplitude $F(\nu)$ applied to a cantilever with spring constant k will give a measured cantilever deflection

$$X(\nu) = \frac{F(\nu)}{k} G(\nu).$$

The form of $G(\nu)$ will depend on the details of the system. As discussed previously, for cantilevers immersed in air it will usually suffice to take $G(\nu)$ to be given by Eq. (2), whereas cantilevers immersed in liquid will have a more complicated response function. Therefore, it is necessary to know the amplitude response function of a cantilever in order to obtain a force from a measured cantilever deflection. If we assume the thermal noise spectrum of a cantilever to be proportional to the cantilever’s amplitude response function, then the bandwidth over which a cantilever can be used for force measurements can be evaluated. In Fig. 4(a), it can be seen that the response of the large cantilever begins to decrease at 4 kHz while the response of the small cantilever with similar spring constant remains flat up to 100 kHz. Consequently, small cantilevers should be useful for measuring forces over a much larger bandwidth than larger cantilevers having comparable spring constants.

In order to demonstrate the increased measurement bandwidth of small cantilevers, we used them to stretch single molecules of the protein titin more than an order of magnitude faster than previously performed with conventional cantilevers. Samples were prepared in a similar fashion to what has been described previously. The cantilever
used was similar to those shown in Fig. 2(a) and had a spring constant of 23 mN/m and a resonant frequency of 23 kHz in water. In Fig. 5, the force versus extension curves are shown for four consecutive “pulls” of a single molecule of titin. The observed sawtooth pattern clearly shows the unfolding of individual protein domains as has been reported. Between pulls we paused for 30 s to allow the protein domains to refold. The first two pulls were performed at 30 µm/s and the second two pulls were performed at 39 µm/s. These pulling speeds are an order of magnitude faster than previously performed and correspond to a frequency in the sawtooth pattern of 1.2 and 1.6 kHz.

VI. CONCLUSION

We have used a simple process to fabricate small rectangular cantilevers out of silicon nitride. We have measured the cantilever’s resonant frequencies, spring constants, and coefficients of viscous damping and have shown that small cantilevers can measure smaller forces than larger cantilever with the same spring constant. Finally, we have used the increased resonant frequency of small cantilevers to unfold single titin molecules more than an order of magnitude faster than previously performed.

ACKNOWLEDGMENTS

The authors would like to acknowledge Christoph Schmidt, John Sader, Jason Cleveland, and Mark Wendman for the useful discussions about various aspects of this work. The authors would also like to thank Mathias Gautel for generously providing the titin sample and Bettye Smith for sample preparation. We also acknowledge the Materials Research Division of the National Science Foundation (Grant No. NSF-DMR9622169) for supporting this work and Digital Instruments for providing equipment.

17 Note that cantilevers with stiffer spring constants will have less thermal noise and may be detection noise limited. In this case adding reflector pads would help to improve sensitivity.
19 In general, buffered HF does not etch silicon nitride at an appreciable rate. However, the plasma-enhanced-chemical-vapor-deposited silicon nitride which we used, did etch in buffered HF. This allowed us to selectively remove the plasma-enhanced silicon nitride, which acts as a passivation layer, without etching the cantilevers.
25 The resonant frequencies of the longest two cantilevers were not measured in water because they were accidentally broken prior to measurement.
30 These spectra were obtained with the following conditions. The deflection signal was low pass filtered at 1 MHz and digitized at 1 MHz for the large cantilever. The deflection signal was low pass filtered at 300 kHz and digitized at 1 MHz for the small cantilever.
31 The narrow 200-µm-long V-shaped silicon nitride cantilever sold by Digital Instruments, Santa Barbara, CA 93117.
32 The assumption that the thermal spectrum is proportional to the cantilever response function is true if the thermal noise driving force is independent of frequency. Although we have not experimentally verified that the thermal noise driving force is independent of frequency, we are unaware of any measurements or theoretical prediction that would indicate this not being true for the bandwidth of interest here.