Monodomain dynamics for rigid rod and platelet suspensions in strongly coupled coplanar linear flow and magnetic fields

M. Gregory Forest

Department of Mathematics, Institute for Advanced Materials, Nanoscience and Technology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3250

Qi Wang

Department of Mathematics, Florida State University, Tallahassee, Florida 32306, and School of Mathematics, Nankai University, Tianjin, 300071, People's Republic of China

Ruhai Zhou

Department of Mathematics and Statistics, Old Dominion University, Norfolk, Virginia 23529

(Received 1 February 2006; final revision received 19 October 2006)

Synopsis

Extensional flows and magnetic fields induce similar steady alignment responses when applied to liquid crystals (LCs), liquid crystal polymers (LCPs), and nematic (rigid rod or platelet) suspensions. This observation is explained for LCs by a classical analogy, expressed as a symmetry, between hydrodynamic and magnetic fields in the Leslie-Ericksen theory [de Gennes and Prost, *The Physics of Liquid Crystals* (Oxford University Press, New York, 1993); Chandrasekhar, *Liquid Crystals* (Cambridge University Press, London, 1992)]. Our purpose here is to extend this analogy: first, to LCPs and nematic suspensions where an excluded volume potential couples either to a linear flow [Hess, Z. Naturforsch. A 31a, 1034–1037 (1976); Doi and Edwards, *The Theory of Polymer Dynamics* (Clarendon, Oxford, 1986)] or to a magnetic field [Bhandar and Wiest, J. Colloid Interface Sci. 257, 371–382 (2003)]; and second, to the strong coupling of excluded volume interactions, planar linear flows, and a coplanar magnetic field. The general symmetries reveal parameter redundancies in the Doi-Hess kinetic theory, leading to a reduced model with significant computational savings. That is, a rotational planar linear LCP (or nematic suspension) flow under an imposed coplanar magnetic field is reducible to a simple shear flow coupled with a transversely imposed magnetic field and negative anisotropy through an orthogonal transformation; whereas a magnetic field coupled linear, irrotational flow corresponds to a tri-directional elongation. We illustrate these results with a second-moment tensor model to predict how a variable strength, coplanar magnetic field may be used to alter or control flow-induced responses of LCPs or nematic suspensions. The illustrations are for sheared dynamic attractors

© 2007 by The Society of Rheology, Inc.

J. Rheol. 51(1), 1-XXXX January/February (2007) 0148-6055/2007/51(1)/1/0/$27.00
(tumbling, kayaking and chaotic), extension-induced steady states, and four roll mill flows. © 2007 The Society of Rheology. [DOI: 10.1122/1.2400704]

I. INTRODUCTION

Imposed magnetic fields often induce magnetic moments on rod or platelet particles in suspension, which may be exploited to control the orientation of liquid crystals, liquid crystal polymers, and anisotropic colloidal suspensions. Likewise, flow-induced torques achieve similar responses. For small molecule liquid crystals, it is well known that extensional flows and magnetic fields yield equivalent responses, a classical analogy which is described by a symmetry of the Leslie-Ericksen (L-E) director theory [de Gennes and Prost (1993); Chandrasekhar (1992)].

Liquid crystal polymers (LCPs) consist of rigid rod or platelet macromolecules of finite aspect ratio in a viscous solvent, for which nonlocal excluded volume interactions are important in understanding their behavior at rest (e.g., the isotropic-nematic phase transition) and in response to additional applied fields. The L-E director theory has been generalized to describe LCPs, with Landau-deGennes second-moment tensor models and with the Doi [Doi and Edwards (1986)] and Hess (1976) kinetic theory for the orientational probability distribution of the rod or platelet ensemble. The tensor models all can be recovered from the kinetic theory by appropriate closure rules (cf. Forest and Wang (2003)). Not surprisingly, LCP models display a richer class of symmetries when linear flow fields and a magnetic field are coupled with an excluded volume potential. Several of these symmetries have been noted previously for the Doi-Hess kinetic theory and its second-moment tensor approximations. Our purpose in this paper is to combine these observations into a more general class of symmetries for nematic polymers (LCPs) where an excluded volume potential is strongly coupled to coplanar linear flow and magnetic fields. This result identifies a reduced model, with three less parameters than the full model, which is amenable to existing numerical codes. We then illustrate utility of this generalized analogy by computing monodomain response diagrams versus magnetic field strength for several types of flow fields.

II. MATHEMATICAL FORMULATION

The theoretical framework of this paper is the Doi-Hess kinetic theory for linear flows of rigid spheroids immersed in a viscous solvent [Ishihara (1951); Hess (1976); Kuzuu and Doi (1983); Wang (2002)]. This is a mean-field theory for nematic or liquid crystalline polymers and rigid rod or platelet suspensions whose equilibrium phases are governed by excluded volume interactions. A general potential has the form

$$V_i(m,x,t) = \nu kT \int_{|m'|=1} B(m,m') f(m',x,t) dm', \quad (1)$$

where $\nu$ is the number density of spheroids per unit volume, $m$ and $m'$ are axes of symmetry of respective spheroids, $B(m,m')$ is the excluded volume [Ishihara (1951)] and $f$ is the orientational probability density function (PDF) of the ensemble of spheroids. We consider nematich liquids for which an imposed magnetic field induces a magnetic moment; intrinsic magnetic moments and magnetic dipole-dipole interactions are presumed negligible (nonferromagnetic spheroids). For such systems, the potential due to the external field is given by [Doi and Edwards (1986); de Gennes and Prost (1993); Bhandar and Wiest (2003)]
\[ V_H = -\frac{\chi_\alpha}{2}(\mathbf{H} \cdot \mathbf{m})^2, \]  

(2)

where \( \mathbf{H} \) is the magnetic field vector, and \( \chi_\alpha \) (normally positive for paramagnetic materials and negative for diamagnetic materials) is the difference between the susceptibility parallel and perpendicular to the spheroid axis, also known as the magnetic anisotropy.

The rotational transport equation for the orientational probability distribution function (PDF) is given by the Smoluchowski equation [Doi and Edwards (1986); Hess (1976); Bhandar and Wiest (2003)]:

\[
\frac{\partial f}{\partial t} = \mathcal{R} \cdot \left[ D_\alpha(a)f_R \left( \mu + \frac{1}{kT}V_H \right) \right] - \mathcal{R} \cdot [\mathbf{m} \times \mathbf{mf}],
\]

(3)

where \( D_\alpha(a) \) is the rotational diffusivity (assumed to be constant in this study); \( \mathcal{R} = \mathbf{m} \times \partial / \partial \mathbf{m} \) is the rotational gradient operator; \( \mathbf{D} \) and \( \mathbf{W} \) are the rate-of-strain and vorticity tensor, respectively; \( a \) is a geometry or shape parameter defined by \( a = r^2 - 1/r^2 + 1 \) where \( r \) is the spheroid aspect ratio; and \( \mu = \ln f + (1/kT)V_s \) is the normalized chemical potential. We remark that the assumption on \( D_\alpha \) to be constant, depending only on the geometry parameter of the spheroid, only affects the orientational dynamics quantitatively [Larson and Öttinger (1991)]; in our experience, nonessential details of individual orbits of the Smoluchowski equation are affected, but not the stable solutions which are the focus of this study.

We note that

\[ \mathcal{R}V_H = -\chi_\alpha \mathbf{m} \times \mathbf{HH} \cdot \mathbf{m}. \]  

(4)

With this, Eq. (3) can be rewritten as

\[
\frac{df}{dt} = \mathcal{R} \cdot \left[ D_\alpha(a)f_R \mu \right] - \mathcal{R} \cdot [\mathbf{m} \times (\mathbf{m} + \chi \mathbf{HH} \cdot \mathbf{m})f],
\]

(5)

where \( \chi = D_\alpha \chi_\alpha / kT \) is a normalized magnetic anisotropy. This formulation shows the standard Jeffery orbit [Jeffery (1922)] \( \mathbf{m} \) (3) due to macroscopic flow is modified by an additional transport due to magnetic forcing. For purposes of extracting a generalized symmetry, we now modify this coupled flow-magnetic field transport term, making use of \( \mathbf{m} \times \mathbf{m} = 0 \):

\[
\mathbf{m} \times (\mathbf{m} + \chi \mathbf{HH} \cdot \mathbf{m}) = \mathbf{m} \times \left\{ \mathbf{W} \cdot \mathbf{m} + \left[ a\mathbf{D} + \chi \left( \mathbf{HH} - \frac{H^2}{k} \mathbf{I} \right) \right] \cdot \mathbf{m} \right. \\
\left. - a\mathbf{D} + \chi \left( \mathbf{HH} - \frac{H^2}{\ell} \mathbf{I} \right) \right\},
\]

(6)

where \( k, \ell \) can be any nonzero numbers and \( H = ||\mathbf{H}|| \).

Recall the Smoluchowski equation absent of external fields is invariant under orthogonal transformations, which reflects orientational degeneracy of ordered equilibria \( f_{eq} \) due to excluded volume interactions. If \( \mathbf{n} = \mathbf{U} \cdot \mathbf{m} \), where \( \mathbf{U} \) is an orthogonal matrix, then Eq. (5) leads to
\[ \frac{df}{dt} = R_n \cdot [D_n(a)f]R_n\tilde{\mu} - R_n \cdot [n \times (\dot{n} + \chi \tilde{H} \cdot n)f], \]  

(7)

where the PDF \( f = f(\mathbf{n}, \mathbf{x}, t) = f(U^T \cdot \mathbf{n}, \mathbf{x}, t) \), \( R_n = n \times \partial / \partial n \), \( \tilde{H} = U \cdot H \) is the rotated external field, and \( \tilde{\mu} = \ln f + (1/kT)V_f(\mathbf{n}, \mathbf{x}, t) \). So, if \( U \cdot H = H \), the invariance retains under a reduced symmetry, i.e., it is invariant under the rotational subgroup \( SU(2, H) = \{ U | U \cdot H = H, U \in SU(3) \} \). We pause now to establish the classical analogy of small molecule liquid crystals from this formulation.

### III. CLASSICAL MAGNETIC FIELD AND EXTENSIONAL FLOW ANALOGY

We assume there is only a constant magnetic field \( H \) and a constant flow field \( (\mathbf{v} = \mathbf{v}_0) \). The tensor \( HH \) has rank one, so there exists an orthogonal matrix \( U_0 \) such that

\[ HH = U_0 \cdot \text{diag}(H^2, 0, 0) \cdot U_0. \]  

(8)

The constant flow field exerts zero flow gradient, i.e., \( \mathbf{W} = \mathbf{D} = 0 \). We choose \( k = l = 3 \) in (6). Then, the Jeffery orbit becomes

\[ \mathbf{m} \times (\mathbf{m} + \chi HH \cdot \mathbf{m}) = \mathbf{m} \times \chi [D_\mathbf{e} \cdot \mathbf{m} - D_\mathbf{e} : \mathbf{m} \mathbf{m} \mathbf{m}], \]  

(9)

where \( \chi D_\mathbf{e} = \chi (HH - (H^2/3)I) \) is a second order, trace-free tensor which can be viewed as an effective rate-of-strain tensor. In rotated coordinates \( n = U_0 \cdot \mathbf{m} \), the Jeffery orbit is

\[ n \times (n + \chi \tilde{H} \cdot n) = n \times [D_{nH} \cdot n - D_{nH} : n n n], \]  

(10)

where \( D_{nH} = \chi \text{diag}(2H^2/3, -H^2/3, -H^2/3) \) is the rate-of-strain tensor for an effective pure extensional flow field with extension rate \((2/3)H^2\) and \( \tilde{H} = U_0 \cdot H \) is the rotated magnetic field. The effective extensional flow is uniaxial (biaxial) extension if the anisotropy \( \chi \) is positive (negative). Thus, a constant amplitude and directional magnetic field coupled to the Smoluchowski equation of Doi and Hess is equivalent to a pure extensional flow applied to LCPs.

One may now appeal to results on pure uniaxial and biaxial extension of rod-like and platelet suspensions with an excluded volume potential [Rey (1995a); Rey (1995b); Wang (1997); Forest et al. (2000a, 2000b); Wang et al. (2005)], and immediately infer complete response diagrams versus strength of an applied DC magnetic field. The latter reference is for the PDF of kinetic theory, while the others were restricted to second-moment closure models of Landau-deGennes type. Thus, this symmetry confirms well-known experimental phenomena: steady orientational distributions emerge under an imposed magnetic field, with a unique stable direction of orientation of the PDF aligned with the applied magnetic field. For \( \chi > 0 \), uniaxial steady states are predicted, while biaxial states are predicted for \( \chi < 0 \). The only variability due to volume fraction, field strength, and particle geometry is in the details (degree of focusing about the peak axis, as determined from the order parameters) of the PDF. This establishes the equivalent result of L-E director theory of liquid crystals or the Landau-deGennes tensor model and Doi-Hess Smoluchowski equation for LCPs and rigid rod suspensions.

Remark: Equilibria of the Smoluchowski equation subject to an imposed external potential field is of Boltzmann or Maxwell type (cf. [Onsager (1949); Constantin and Vudadinovic (2005)]. In a recent paper by one of the authors [Wang et al. (2005)], it is proven that all steady state solutions of the Smoluchowski equation are given by the Boltzmann-type distribution, parametrized by a pair of order parameters; the solutions and their stability can then be inferred by solving a nonlinear algebraic-integral equation.
system and examining the system’s free energy density. The symmetry presented here, coupled with this recent theorem, establishes the same conclusions for irrotational flows and magnetic fields applied to nematic polymers, for general kinetic models of Doi-Hess type [Forest et al. (2006)]. Extensions to more general intermolecular potentials are given in Gopinath et al. (2005).

IV. GENERALIZED ANALOGY FOR COUPLED COPLANAR FLOWS AND MAGNETIC FIELDS

If we now consider Eq. (6) with nonzero $W$ and $D$, the same analysis presented above absorbs the magnetic field into an effective velocity field of an incompressible fluid with vorticity tensor $W$ and rate-of-strain tensor $aD + \chi(\mathbf{HH} - (H^2/k)\mathbf{I})$ with $k = \ell = 3$. The magnetic field is equivalent to a pure elongational flow component in the direction of $\mathbf{H}$. Thus, the trade-off noted above still applies if there is an arbitrary linear flow coupled with either the magnetic field or a pure extensional flow.

We recall that the Doi-Hess kinetic model and associated second-moment tensor models for linear planar flows of LCPs obey a purely hydrodynamic correspondence principle [Forest et al. (2004a, 2004b)]. Rather than a “one for one” trade-off in parameters as in the classical symmetry between extensional flow and a magnetic field, the hydrodynamic symmetry reduces the number of model parameters. Our goal now is to combine these two observations into a generalized symmetry, which applies to the full coupling of excluded volume, a linear planar flow, and a coplanar magnetic field. The reduction in model parameters turns out to be quite significant, from six to three, and fortuitously, the reduced model requires only a simple modification of our existing numerical codes. In the last section, we solve the reduced model to illustrate predictions gained by application of this generalized symmetry.

Consider a linear planar flow field

$$v = (v_{11}x + v_{12}y, v_{21}x - v_{11}y, 0)$$  \hspace{1cm} (11)

where $v_{ij}$ are constants, with gradient

$$\nabla v = \begin{pmatrix} v_{11} & v_{12} & 0 \\ v_{21} & -v_{11} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$  \hspace{1cm} (12)

and a coplanar magnetic field $\mathbf{H} = (H_1, H_2, 0)^T$. Let

$$p = \frac{1}{2}(v_{12} + v_{21}), \quad q = \frac{1}{2}(v_{12} - v_{21}).$$  \hspace{1cm} (13)

We first consider $q \neq 0$ corresponding to a flow field with nonvanishing rotational component. We choose $k = \ell = 2$ in Eq. (6) so that the upper left $2 \times 2$ submatrix of $aD + \chi(\mathbf{HH} - (H^2/2)\mathbf{I})$ is traceless. This $2 \times 2$ submatrix qualifies as an effective rate-of-strain tensor. Then, $W = qW_0$ and

$$aD + \frac{\chi H^2}{2}(e_1e_1 + e_2e_2 + e_3e_3) = \lambda \mathbf{U}^T \cdot D_0 \cdot \mathbf{U} - \frac{\chi H^2}{2}e_3e_3,$$  \hspace{1cm} (14)

where $W_0$ and $D_0$ are normalized vorticity and rate-of-strain tensors for the pure shear velocity field $v = (2y, 0, 0)$,
\[
W_0 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad D_0 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad U = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix},
\]

\[
\cos 2\theta = \frac{b}{\sqrt{b^2 + c^2}}, \quad \sin 2\theta = -\frac{c}{\sqrt{b^2 + c^2}},
\]

\[
b = a_p + \chi H_1 H_2, \quad c = a_{v_1} + \chi \frac{H_1^2 - H_2^2}{2}, \quad \lambda = \sqrt{b^2 + c^2}.
\]

In the new configurational coordinates \( \mathbf{n} = \mathbf{U} \cdot \mathbf{m} \), the Smoluchowski equation takes the form

\[
\frac{d\mathbf{n}}{dt} = R_n \cdot \left[ D_1(a) \tilde{\mathbf{r}} R_n \tilde{\mu} \right] - R_n \cdot \left[ \mathbf{n} \times \left( \mathbf{n} - \frac{\chi H^2}{2} \mathbf{e}_3 \cdot \mathbf{n} \right) \tilde{f} \right],
\]

\[
\mathbf{n} = \tilde{\mathbf{W}} \cdot \mathbf{n} + \tilde{a} \left[ \tilde{\mathbf{D}} \cdot \mathbf{n} - \tilde{\mathbf{D}} : \mathbf{n} \right],
\]

where \( \tilde{\mathbf{W}} = q \mathbf{W}_0 \), \( \tilde{\mathbf{D}} = q \mathbf{D}_0 \), and \( \tilde{a} = \lambda / q \).

This transformed system (16), by comparison with Eq. (3), corresponds to a simple shear flow with effective shear rate \( 2q \), a modified spheroidal shape parameter \( \tilde{a} \), together with an imposed magnetic field in direction \( \mathbf{e}_3 \) normal to the shearing plane, and most importantly, the anisotropy \(-\chi / 2\) is opposite of the original one for the same material. The response to arbitrary coupled coplanar flow and magnetic fields is now accessible by solution of the transformed or “reduced kinetic model” (16), which requires a simple shear flow code for LCPs with one more transverse field component with negative anisotropy. One immediately accessible question is: how are the various time periodic and chaotic responses of nematic polymers in planar, shear-dominated linear flows [Faraoni et al. (1999); Grosso et al. (2001); Rienacker et al. (2002); Larson and Ottiinger (1991); Forest and Wang (2003); Forest et al. (2004a, 2004b, 2004c, 2004d)] modified by a coplanar magnetic field as the field strength is varied?

Before answering this question, we complete the discussion on the remaining case where \( q = 0 \), i.e., there is no rotational flow component and the system consists of excluded volume coupled with coplanar extensional flow and magnetic fields. Here, we can choose

\[
\cos 2\theta = \frac{c}{\sqrt{b^2 + c^2}}, \quad \sin 2\theta = \frac{b}{\sqrt{b^2 + c^2}},
\]

so that the effective rate-of-strain tensor is diagonal \( \lambda \mathbf{D}_1 \), where

\[
\mathbf{D}_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\]

Now, the corresponding flow is a planar extension or elongation

\[
\mathbf{v} = \lambda (x, -y, 0),
\]

which is a potential flow with the corresponding normalized potential given by
\[ V_r = -\frac{\alpha \lambda}{2D_r} \mathbf{D}_1: \mathbf{m} . \]  

The coupled flow-magnetic interaction can be recast in terms of a total normalized potential given by

\[ V = V_i(m) - \frac{\alpha \lambda kT}{2D_r} \mathbf{D}_1: \mathbf{m} + \frac{\chi kT}{4D_r} \mathbf{H} e_3: \mathbf{m} . \]  

The Smoluchowski equation is then expressible in simplified form:

\[ \frac{d}{dt} f(\mathbf{m}) = \mathcal{R} \cdot \mathbf{D}_f \left( \mathcal{R} f + \frac{1}{kT} \mathcal{R} V f \right) . \]  

The steady states are thus given by a Boltzmann distribution [Wang et al. (2005)]

\[ f(\mathbf{m}) = \frac{1}{Z} e^{-\mathcal{W} kT} . \]  

In steady state, the ensemble averaged torque vanishes

\[ \langle \mathcal{R} V \rangle = 0 . \]  

This is equivalent to

\[ \epsilon_{ijk} \left( \frac{\alpha \lambda}{2D_r} \mathbf{D}_1 - \frac{\chi kT}{4D_r} e_3 e_3 \right) : \mathbf{M}_{ij} = 0 , \]  

where \( \mathbf{M} = \langle \mathbf{m} \mathbf{m} \rangle = \int_{|\mathbf{m}|=1} \mathbf{m} \mathbf{m} d\mathbf{m} \) is the second moment of \( \mathbf{m} \) with respect to the PDF \( f \).

This in turn implies

\[ M_{12} = M_{13} = M_{23} = 0 \]  

if \( \alpha \lambda \neq -\langle \mathbf{H}^2 / 2 \rangle \). If \( \alpha \lambda = -\langle \mathbf{H}^2 / 2 \rangle \), \( M_{12} = M_{23} = 0 \); if \( \alpha \lambda = \chi kT / 2 \), \( M_{12} = M_{13} = 0 \). In these latter cases, it can be shown \( \mathbf{M} \) is diagonal as well. Thus, the principal axes of the rate-of-strain tensor coincide with those of the second moment tensor and both share the external field direction \( e_3 \) as a principal axis. This result automatically implies all steady states have peak alignment either in the plane of the flow and magnetic field, or along the normal direction; that is, the anomalous pairs of “out of plane steady states” that exist in shear [Forest and Wang (2003)] cannot exist.

We return now to the general case with a rotational flow component. This generalized flow-magnetic field symmetry is inherited by any second moment tensor model that respects rotational invariance of the excluded volume potential. We shall illustrate the theoretical results above for a particular closure model of Doi-Hess theory that captures many qualitative features of the full kinetic model [Larson and Öttinger (1991); Forest and Wang (2003); Hess (1976); Rey (1995a); Rey (1995b)]. We denote \( \mathbf{M} = \langle \mathbf{m} \mathbf{m} \rangle \), \( \mathbf{M}_4 = \langle \mathbf{m} \mathbf{m} \mathbf{m} \mathbf{m} \rangle \) as the second, fourth moments of the PDF, respectively, and use the Maier-Saupe excluded-volume potential [Doi and Edwards (1986)]

\[ V_i = -\frac{3}{2} \frac{N k T \mathbf{M} : \mathbf{m} \mathbf{m}}{2} . \]  

It follows from Forest and Wang (2003) that
\[
\frac{d}{dt} \tilde{M} = -2 \left( \tilde{a} \tilde{D} - \frac{\chi}{2} H^2 e_3 e_3 \right) \cdot \tilde{M} + \tilde{M} \cdot \left( \tilde{a} \tilde{D} - \frac{\chi}{2} H^2 e_3 e_3 \right)
\]
where \( \tilde{M} = (n m n) \) and \( \tilde{M} = (n n) \). We note that \( \tilde{a} = \lambda \) when \( q = 0 \) and \( \tilde{W} = 0 \) (planar extension).

We approximate the fourth moment using a parametrized closure for any symmetric tensor \( C \):
\[
C: \tilde{M} = a_i C: \tilde{M} + \frac{(1 - a_i)}{2} (C \cdot \tilde{M} + \tilde{M} \cdot C),
\]
where \( 0 < a_i \leq 1 \) in each application of the rule. The above system, after two applications of this rule, becomes
\[
\frac{d}{dt} \tilde{M} - \tilde{W} = -2 a_i \left( \tilde{a} \tilde{D} - \frac{\chi}{2} H^2 e_3 e_3 \right) \cdot \tilde{M} + \tilde{M} \cdot \left( \tilde{a} \tilde{D} - \frac{\chi}{2} H^2 e_3 e_3 \right)
\]
where \( \tilde{a} = \lambda \) and \( a_i \) both fixed by \( \tilde{a} \), see \( a_i \) given by
\[
s_0 = 0, \frac{1 \pm \sqrt{1 - 8(3a_1N)}}{4}
\]
and \( n^* \) is the uniaxial director (which is arbitrary). There are two critical concentrations, both fixed by \( a_i \): the onset of nematic equilibria \( N_c^{(1)} = 8/3a_1 \) and the instability of the isotropic phase \( N_c^{(2)} = 3/a_1 \). We fix \( a_1 = 3/5, N_c^{(2)} = 5 \), which matches the result of kinetic theory exactly, and \( N_c^{(1)} = 40/9 \approx 4.44 \), which is very close to the kinetic theory value 4.49. The second closure parameter \( a_2 \) could be used to fit to another field-induced kinetic model bifurcation. For purposes here, we set \( a_1 = 0.6, a_2 = 1 \), which absorbs \( a_2 \) into the shape parameter \( \tilde{a} \), and explore parametric behavior in the transformed (i.e., reduced) model to illustrate phenomena associated with coupled coplanar flow and magnetic fields.

We nondimensionalize the orientation tensor equation for \( \tilde{M} \) by the time scale set by rotary diffusivity \( t_0 = 1/6D_r \). Then
\[
\hat{q} = q t_0, \quad \hat{\lambda} = \lambda t_0, \quad \hat{\chi} = \chi H^2 t_0,
\]
where \( H_0 \) is a characteristic field strength. We identify \( \text{Pe} = 2\hat{q} \) as the Peclet number in simple shear or \( \text{Pe} = \tilde{a}\lambda \) as the effective Peclet number in planar extension. For convenience, we hereafter drop the “hat” on all dimensionless parameters.
V. SIMPLE SHEAR FLOWS COUPLED WITH A TRANSVERSE MAGNETIC FIELD AND A NEGATIVE ANISOTROPY

We first study parametric behavior of the reduced model, consisting of simple shear coupled to a transverse magnetic field of variable strength. (Afterward, we will relate these phenomena to the original formulation of coupled, coplanar, magnetic, and linear flow fields.)

From the formula for the modified shape parameter

\[ \tilde{a} = \frac{1}{q} \sqrt{\frac{\chi}{2} (H_1^2 - H_2^2)^2 + (ap + \chi H_1 H_2)^2} \] (33)

we note that the magnetic field strength, material anisotropy, molecular geometry, and velocity components contribute to \( \tilde{a} \). From previous studies, for sufficiently large stretching rates, the only stable orientational distributions exhibit steady alignment in the flow plane [Forest and Wang (2003); Forest et al. (2004d)]. This translates to a well-known experimental observation: a sufficiently strong magnetic field strength will overwhelm any linear flow field and induce a steady alignment of the nematic liquid.

On the other hand, if \( \tilde{a} \) is not large enough to force a stable, steady, aligned orientational distribution, the pure shear dynamics will be modified by the transverse magnetic field \( H_2 e_3 \), and the negative anisotropy \( -\chi/2 \). We now explore this interaction, anticipating a “taming effect” of the magnetic field with respect to complex dynamic responses to shear dominated flow. By this we mean that the magnetic field should be capable of arresting the dynamics induced by shear, at some threshold field strength that is to be determined by this analysis.

We explore the impact of the transverse magnetic field with respect to three representative regimes of the effective Peclet number Pe. The three typical sheared responses we explore are two types of kayaking limit cycles and a chaotic orbit. We determine the phase transition sequence, or bifurcation diagram, as the magnetic field strength is increased from zero. In the following examples, we treat \( \tilde{a} \) and \( \tilde{H} \) as independent parameters, and investigate how the variation in anisotropy and field strength \( \tilde{H} \) affects the attractors of the model system at fixed values of \( (Pe, \tilde{a}) \).

A. Regime 1: Magnetic field influence on kayaking orbits at small fixed Pe and fixed \( \tilde{a} \)

When the magnetic field strength is zero, the stable solution or attractor of Eq. (30) at selected parameter values, \( Pe=1.5, \tilde{a}=0.8, N=6 \), is a so-called “kayaking orbit,” a name coined by Larson and Öttinger (1991), and labeled “K” in our figures. This limit cycle response to shear corresponds to a peak axis of orientation rotating around the flow vorticity axis. When the magnetic field (along the vorticity axis of symmetry of the kayaking orbit) is turned on parametrically, the effect of negative magnetic anisotropy is to push the oscillations of the peak axis away from the vorticity axis toward the flow-flow gradient plane. As the magnetic field strength is increased, there is an out-of-plane to in-plane transition to the classical tumbling orbit (with peak director rotating continuously in the flow plane). This transition among periodic limit cycles is through a period-doubling bifurcation, depicted in Fig. 1, so that the tumbling orbit is twice as fast as the kayaking limit cycle. The transverse magnetic field and negative magnetic anisotropy thus forces out-of-plane kayaking orbits in pure shear onto in-plane tumbling orbits. (The negative anisotropy has a repulsive effect, pushing the limit cycle into the plane normal to the magnetic field direction.)
B. Regime 2: Magnetic field influence on chaotic sheared dynamics at intermediate Pe and fixed $\tilde{a}$

At zero magnetic field strength, we fix the flow and aspect ratio parameters so that the attractor is chaotic [Grosso et al. (2001); Forest and Wang (2003)]. We then adiabatically raise the field strength and observe the attractor transitions, anticipating steady alignment at very strong field strength. Figure 2 depicts a representative bifurcation diagram for this
parameter regime, where the seemingly vertical line represents the arc of out-of-plane steady state pairs that connects the out-of-plane tilted kayaking states to flow-aligned steady states [Forest and Wang (2003)]. Alternatively, one can view this result from a steady aligned magnetic field strength, and explore the transition sequence as the magnetic field is slowly turned off: the prediction is a unique steady state alignment along the magnetic field axis at high field strengths, giving way to a pair of out-of-plane steady states (labeled OS), then Hopf and periodic-doubling bifurcations to chaos for sufficiently weak magnetic field strength. Thus, the model predicts the transition between shear-dominated rheochaos and magnetic-field-dominated steady state alignment.

C. Regime 3: Magnetic field influence on kayaking orbits at intermediate Pe and fixed $\tilde{a}$

We fix the normalized shear rate so that the stable attractor consists of pairs of so-called “tilted kayaking orbits” at zero magnetic field strength. We find a stable steady orientational distribution exists for sufficiently strong magnetic field. The transition sequence versus magnetic field strength is depicted in Fig. 3, consisting of an unsteady-to-steady transition (a supercritical Hopf bifurcation) from tilted kayaking orbits to out-of-plane steady states, followed by a sharp in-plane transition.

In summary, these three illustrations show that an imposed transverse magnetic field of sufficient strength and negative anisotropy arrests any time-dependent, shear-induced orbits, whether they are periodic or chaotic. A more subtle phenomenon occurs for intermediate magnetic field strengths applied to sheared kayaking orbits: the out-of-plane kayaking orbit is drawn into a tumbling orbit confined to the shear plane. These solutions of the reduced model are now translated back to the original model.

**FIG. 3.** $M_{13}$, time averaged, as a function of $\chi$ at parameter values $\text{Pe}=3.6$, $\tilde{a}=0.8$ and $N=6$. In this parameter regime, the bistable attractors are tilted kayaking orbits in pure shear ($\chi=0$). As $\chi$ increases, the out-of-plane tilted kayaking orbits are arrested, leading to in-plane, steady distributions.
VI. MAPPING BETWEEN SOLUTIONS OF THE REDUCED MODEL AND THE FULLY COUPLED SYSTEM

In the previous section, we conducted a parametric study of the reduced model for LCPs: shear flow with an imposed magnetic field in the normal direction to the shearing plane and a negative magnetic anisotropy of the macromolecules. The outcomes of particular physical experiments are thereby predicted; however, the point of the theoretical results presented here is that these exact outcomes, up to an orthogonal transformation of coordinates, are shared by a large number of additional physical experiments. We amplify these results in two directions, using the solutions presented above: mapping from fixed parameters in the reduced model back to the original formulation of coplanar magnetic and linear flow fields; and, starting from a coplanar flow and magnetic field problem, projecting by the symmetry principle onto the reduced model.

We first establish the family of planar linear flows and coplanar magnetic field that correspond to any given reduced shear flow solution. That is, we begin from a fixed parameter set \((\text{Pe}, \tilde{a}, H^2)\) of the reduced problem where we fix the anisotropy parameter \(\chi_a\), and determine which parameter set(s) \((v_{11}, v_{12}, v_{21}, H_1, H_2, a, \chi)\) in the original physical model share the same PDF or second-moment tensor, up to an orthogonal transformation, by virtue of the symmetry. Recall the classical flow-magnetic analogy is a one-to-one correspondence; by contrast, as shown in [Forest et al. (2004a); Forest et al. (2004b)], the flow-molecular geometry symmetry exhibits a two-parameter degeneracy. Here, for strongly coupled magnetic and flow fields, there is a three-parameter degeneracy. Namely, each solution of the reduced model problem corresponds to a three-parameter family of linear planar flows of LCPs with coplanar magnetic fields.

Specifically, we first construct \(\mathbf{v} = (v_{11}x + v_{12}y, v_{21}x - v_{11}y, 0)\), \(\mathbf{H} = (H_1, H_2, 0)\), and \(a\) from given \(\text{Pe}, \tilde{a}\) and \(H^2\) through

\[
\tilde{a} = \frac{2}{v_{12} - v_{21}} \sqrt{\left(\frac{a}{2} (v_{12} + v_{21}) + \chi H_1 H_2\right)^2 + \left[a v_{11} + \frac{\chi}{2}(H_1^2 - H_2^2)\right]^2},
\]

\[
\text{Pe} = (v_{12} - v_{21}),
\]

\[
H^2 = H_1^2 + H_2^2.
\]  

This is a 6-to-3 mapping between parameters of the original model, \((v_{11}, v_{12}, v_{22}, H_1, H_2, a)\), and those of the reduced model, \((\text{Pe}, \tilde{a}, H^2)\).

We next illustrate how a physically meaningful four-mill flow [Bentley and Leal (1986); Bird et al. (1987); Fuller and Leal (1981)] for LCPs of the geometry parameter \(a=0.8\)

\[
\mathbf{v} = G[(1 + \gamma)x + (1 - \gamma)y, -(1 - \gamma)x - (1 + \gamma)y, 0]^T,
\]

\[
v_{12} = G(1 - \gamma), \quad v_{11} = G(1 + \gamma), \quad v_{21} = -G(1 - \gamma)
\]  

relates to the reduced simple shear model. Without loss of generality, we set \(H^2=1\) and parametrize the planar magnetic field by

\[
H_1 = \cos \phi, \quad H_2 = \sin \phi.
\]  

The 6–3 mapping reduces to a 3–2 mapping between the parameters in the original model: \((G, \gamma, \phi)\) and the ones in the reduced model: \((\text{Pe}, \tilde{a})\) according to Eq. (34), which in these new parameters become:
At this stage, we have the freedom to specify any four-roll mill flow by fixing $G$, and any direction of the coplanar magnetic field. Recall at the outset, the symmetry is valid for any strength of the excluded volume interaction potential and for any magnetic susceptibility parameter $\chi_a$. We will assert a potential strength $N=6$ and modified magnetic susceptibility $\chi=0.2$ in all illustration below.

We exercise this freedom now, specifying the three remaining parameters: the four-roll mill flow type, $G=1.6125$, $\gamma=0.03876$, and the coplanar magnetic field direction $\phi=\pi/2$. This unique experimental condition now maps, by relations (37), onto the reduced model with dictated parameters $Pe=3.1, \tilde{a}=0.8$. We now refer back to Fig. 2, where this reduced model has already been solved in the course of our parametric study (by design, of course). The bistable responses are a pair of tilted kayaking orbits! Thus the experiment of interest has the same bistable, periodic limit cycle attractors, where the axis of symmetry of the limit cycles is simply rotated by the rotation matrix $U$ defined earlier in Eq. (15).

Conversely, relations (37) with dictated parameters ($Pe=3.1, \tilde{a}=0.8$) do not uniquely specify $G, \gamma, \phi$ at the values $1.6125, 0.03876, \pi/2$; there is a one parameter family of $G, \gamma, \phi$ for reduced model parameters $Pe=3.1, \tilde{a}=0.8$. Figure 4 depicts this one-parameter family of values parametrized by the shear component $\gamma$, depicting the angle of the coplanar magnetic field $\phi$ for allowable $\gamma$, while the value of $G$ versus $\gamma$ is prescribed as $G=Pe/2(1-\gamma)$.

If we relax the restrictions outlined above in order to focus on a particular class of four-roll mill flows, Eq. (34) gives more general linear planar flows of modified geometry parameter fluids and coplanar magnetic fields that map to the same reduced model parameters. In general, there is a full three-parameter family of original model parameters...
that has the exact same reduced model parameter values $Pe=3.1$, $\tilde{a}=0.8$, and therefore all share this bistable pair of tilted kayaking orbits. This fact is furthermore true for all values of $Pe$, $\tilde{a}$, so that the bifurcation diagrams illustrated in the previous section, and phenomena associated with magnetic field strength variations, can each be traced back to experimental conditions as described in this example.

VII. PLANAR EXTENSIONAL FLOWS COUPLED WITH A COPLANAR MAGNETIC FIELD

Finally, we study the reduced model for the limiting case of a planar extensional flow (irrotational flow) coupled with a coplanar magnetic field. The corresponding reduced model is easily seen to be a planar extensional flow subject to a magnetic field in the direction normal to the flow plane with a negative anisotropy. The combined effects of planar extension and the perpendicular magnetic field are seen, by the flow-magnetic field symmetry, to correspond to a three-dimensional triaxial elongational flow! We find that the effective rate-of-strain tensor, in the frame of the principal axes or directors of the second moment $\mathbf{M}$, is given by:

$$D_3 = \text{diag}(a\lambda + \frac{X}{6}, a\lambda + \frac{X}{6}, -\frac{X}{3}).$$

(38)

The stretch or compression rate is given by the diagonal entries, which are generically, distinct.

Our previous studies on uniaxial and biaxial elongation indicate that the kinetic model and its mesoscopic closures do not support any time-periodic stable solutions, either in-plane or out-of-plane in the strong flow field [Wang (1997); Forest et al. (2004a); Forest et al. (2004b); Wang et al. (2005)]. With this triaxial elongational flow of the target model, there is no reason to expect stable periodic solutions either. We thus write the orientation tensor in its biaxial representation parametrized by an in-plane angle variable $\xi(t)$

$$\mathbf{M} = s(t)\left[\mathbf{n}\mathbf{n} - \frac{\mathbf{I}}{3}\right] + \beta(t)\left[\mathbf{n}^+\mathbf{n}^+ - \frac{\mathbf{I}}{3}\right] + \frac{\mathbf{I}}{3},$$

(39)

where $s$ and $\beta$ are the order parameters and the two in-plane major directors:

$$\mathbf{n} = (\cos \xi(t), \sin \xi(t), 0)^T, \quad \mathbf{n}^+ = (-\sin \xi(t), \cos \xi(t), 0)^T.$$  

(40)

The third major director is perpetually fixed in the normal direction of the plane. The governing equation for the orientation tensor (30) reduces to a set of equations for the order parameters and the angle variable:

$$\frac{ds}{dt} = -U(s) + \frac{2Ns\beta}{3}(1 + \beta - s) - \frac{\chi H^2}{2}(1 + s)(s + \beta - 1) - Pe \cos 2\xi \left(s^2 - 2s\beta - \frac{4}{3}s + \frac{2\beta}{3} - \frac{2}{3}\right),$$

$$\frac{d\beta}{dt} = -U(\beta) + \frac{2Ns\beta}{3}(1 + s - \beta) - \frac{\chi H^2}{2}(1 + \beta)(s + \beta - 1) + Pe \cos 2\xi \left(\beta^2 - 2s\beta + \frac{2}{3}s - \frac{4\beta}{3} - \frac{2}{3}\right).$$
\[ \frac{d \xi}{dt} = \frac{\text{Pe} \sin 2(\xi \beta + 2)}{3(\beta - s)}, \]

where \(U(s) = s[1 - (N/3)(1 - s)(2s + 1)]\) and \(\text{Pe} = a \lambda\) is an effective Peclet number with the geometry parameter \(a\) included.

The steady states of the third equation in Eq. (41) lead directly to \(\xi = 0, \pi/2\), indicating the two in-plane directors must be coaxial with principal axes of the rate-of-strain tensor. When the directors are aligned with principal axes of the rate-of-strain tensor, the order parameter dynamics are limited to isolated attractors or steady states that exhibit biaxiality. In steady states, the system of governing equations preserves the following symmetry properties for all solutions:

- if \((s, \beta, \xi = 0)\) is a solution, so is \((\beta, s, \xi = \pi/2)\);
- if \((s, \beta, \xi, \text{Pe})\) is a solution, so is \((\beta, s, \xi, -\text{Pe})\);
- when \(\text{Pe} = 0, (s, \beta)\) is a solution, so is \((\beta, s)\) since the flow is biaxial elongation with the axis of symmetry in the normal direction of the plane.

According to the symmetry properties, the solutions can be obtained with \(\xi = \pi/2\) should we find the solutions for \(\xi = 0\). Similarly, we obtain the steady state solutions for planar extension with \(-\text{Pe}\) should we know the solutions for \(\text{Pe}\). After a lengthy simplification, we deduce that the steady state condition for the order parameter \(s\) is a seventh-order polynomial equation given in the Appendix. The corresponding solutions for \(\beta\) are then obtained using the same equation for \(s\) while replacing \(\text{Pe}\) by \(-\text{Pe}\) following the symmetry properties on \(\text{Pe}\) outlined above. This symmetry yields nontrivial numerical simplification in calculating the steady states.

In order to investigate the impact of the transversely imposed magnetic field on planar extension of flowing LCPs with a negative anisotropy, we first benchmark the planar extension flow behavior free of the magnetic field. Figure 5 depicts the phase diagram for the order parameters \((s, \beta)\) as functions of \(N\) with respect to \(\text{Pe} = 0, 0.01, 0.1, 0.4\); it shows the gradual departure from uniaxiality \((s = 0, \beta = 0, \text{or } s = \beta)\) in the order parameters as \(|\text{Pe}|\) increases. Except for a small interval of bistability in \(\text{Pe}\), the steady state with its major director in the stretching direction (the \(x\) axis in posed planar extension \(v = \text{Pe}(x, -y, 0)\) becomes the only stable steady state. Whereas in uniaxial elongation the stable solution is uniaxial in elongation and biaxial in compression at high concentration [Wang (1997)]. We notice that the biaxiality along this solution branch is extremely weak; the parameter solution behavior is quite similar to the elongational flow in three dimensions [Wang (1997)].

We denote the eigenvalues of the second moment tensor \(\mathbf{M}\) by \(d_i, i = 1, 2, 3\), which represent the degrees of orientation with respect to the principal axes (eigenvector directions) [Forest et al. (1997)]. Suppose \(d_1\) has corresponding eigenvector \(\mathbf{n}, d_2\) with \(\mathbf{n}^\perp\). It follows from (39)

\[ s = d_1 - d_3, \quad \beta = d_2 - d_3. \]

For the stable branches in Fig. 5, we notice that the order parameters \(s > 0, \beta < 0\). This shows that the degree of orientation along the stable biaxial branch satisfies the following order:

\[ d_2 < d_3 < d_1. \]

Thus, this stable biaxial phase possesses the highest degree of orientation in the principal stretching direction of the flow \(\mathbf{n}\), followed next by the neutral direction, and is least oriented in the compression direction.
We next consider the impact of the additional magnetic field imposed transverse to the flow plane on materials with a negative anisotropy. We illustrate the results on steady states with Pe=0.1 to contrast with the results in Fig. 5.

Figure 6 depicts the steady states as functions of the dimensionless concentration $N$ with respect to $\chi=0, 1, 2, 10$, respectively. The impact of the magnetic field is quantitative only. Now, the stretching rate is increased by $\chi/6$ in the direction of $n$, the compression rate is decreased by the same amount in the direction of $n^{-1}$, and the compression rate is increased by $\chi/3$ in the perpendicular direction. This impacts the order parameter behavior by increasing the degree of orientation in the direction of $n$, decreasing the degree of orientation in the normal direction of the plane while increasing the degree of orientation in the direction of $n^{-1}$. This translates into increased order in $s$ and $\beta$ simultaneously. For $\chi=1, 5, 10$, the effective generalized triaxial elongation stretches in the plane and compresses in its perpendicular direction. In these cases, the degree of orien-
tation in $n^+$ is higher than that in the transverse direction, reflected in a positive $\beta$. By increasing the strength of the magnetic field or the magnitude of the anisotropy, this trend continues.

Finally, we examine the impact of the Peclet number (normalized extension rate) on steady states in the presence of the transversely imposed external field. Figure 7 depicts the solution for $\chi=1$ at $Pe=0,0.01,0.1,0.4$, respectively. At $Pe=0$, the solution of $s$ and that of $\beta$ is identical according to the symmetry. When $Pe$ increases, again the stretching/compression rate provides a good diagnostic tool. The stretching rate in $n$ increases and that in $n^+$ decreases while the compression rate in the normal direction is held constant. The noticeable feature is that the stable order parameter $\beta$ decays from a positive value.
at $\text{Pe}=0$ to a negative one as $\text{Pe}$ increases while $s$ maintains positive. This indicates the degree of orientation in $\mathbf{n}$ decays relative to that in the normal direction as the stretching rate in that direction decreases from positive to negative.

In summary, the stable steady states exhibit weak biaxiality with the degree of orientation correlating well with the stretching rate of the triaxial elongation. A positive stretching rate aligns the rod ensemble along the flow principal axis, while a compression rate decreases alignment in that direction. These results are as expected on physical grounds; the gain, however, is that they are quantitative and have potential to be combined with experiments and material properties.
VIII. CONCLUSION

We have developed a generalized symmetry, extending the classical analogy between extensional flows and magnetic fields applied to liquid crystals (LCs). We consider the Doi-Hess theory of liquid crystal polymers (LCPs), where an excluded volume potential and the isotropic-nematic phase transition are leading order considerations. We then generalize the classical symmetry in two ways: from LCs to LCPs; and from a trade-off of flow and magnetic field to the strong coupling between excluded volume interactions and the isotropic-nematic phase transition are leading order considerations. We then Doi-Hess theory of liquid crystal polymers model reduction generalizes previous results of the authors exploration of the nonlinear interactions among three coupled fields. This symmetry-based reduced model with only three flow-magnetic field parameters, making possible the exploration of the nonlinear interactions among three coupled fields. This symmetry-based model reduction generalizes previous results of the authors [Forest et al. (2004a)] to include a magnetic field coupling. The reduced model derived herein consists of an excluded volume potential and simple shear coupled with an imposed magnetic field in the flow vorticity direction, where the LCP has a negative magnetic anisotropy and a modified molecular geometry parameter. Shear-free planar extensional flows of LCPs with a coplanar magnetic field obey an even simpler reduced problem, consisting of an effective triaxial elongational flow. These reduced models are then amenable to existing numerical codes for simple shear or extensional flow of LCPs with a minor extension. We apply these results to predict LCP response diagrams in the presence of coupled coplanar linear flows and magnetic fields, restricting to second-moment models. The introduction of a magnetic field arrests the complex dynamics of sheared LCPs, as expected, yet we predict a sequence of phase transitions versus magnetic field strength. We also model a four-roll mill experiment with a coplanar magnetic field, illustrating the attractor transitions due to increased magnetic field strength, when the imposed flow is a linear combination of shear and extension. The results naturally extend to the coplanar, time-dependent, imposed magnetic field like rotating magnetic field.

ACKNOWLEDGMENTS

The authors acknowledge financial support from AFOSR grant Nos. FA9550-05-1-0025, FA9550-06-1-0063, NSF Grant Nos. DMS 0604891, 0604912, 0605029, 0626180, NASA URETI BIMat Award No. NCC-1-02037, and the Army Research Office.

APPENDIX: THE GOVERNING EQUATION FOR THE ORDER PARAMETER s

The governing equation for the order parameter $s$, which is also the governing equation for $\beta$ should $\mu$ is replaced by $-\mu$, where $\mu=Pe/a$.

\[
96x^7N^4 - 64a^3\mu^3 + (480aN^2\mu + 120N^3\chi)x^6 - 48a^2\chi\mu^2 + (576a^2N^2\mu^2 + 144aN^3\mu) + 432aN^2\chi\mu - 12N^4 - 12N^3\chi + 48N^2\chi^2 + 288N^3)x^5 - 12a\chi^2\mu + (-384a^3N\mu^3 + 576aN^2\mu^2 + 288aN^3\mu + 576aN^3\mu - 576aN^2\mu + 120aN^3\mu) + 576aN^2\mu + 96aN^3\mu + 12aN^4\mu + 912aN^3\mu - 144N^3\chi - 12N^3\chi + 6N\chi - 12N^3\chi + 288N^3\mu^3 + (768a^4\mu + 576aN\mu^3 - 192a^3\mu^3 - 672a^2N^2\mu^2 + 240a^2N\mu^2 + 48a^2N\mu^2 + 480aN^3\mu - 144aN^3\mu - 480aN^3\mu + 12aN^4\mu + 12aN^4\mu) + 144aN^3\mu + 432aN\mu + 24N^4 + 12N^3\chi - 54N^2\chi - 3N\chi - 144N^3 - 12N^2\chi + 46N\chi^2 + 216N^2)x^3 - \chi^3 + (384a^3N\mu^3 - 384a^3\mu^3 - 576a^2N^2\mu^2 - 288a^2N\mu^2 + 192a^2N\mu^2)
\]
+ 96a^2 \chi^2 + 96aN^2 \mu - 96aN^2 \chi \mu - 120aN^2 \chi^2 \mu - 384aN^2 \mu + 32aN \chi \mu + 56a \chi^2 \mu + 24N^3 \chi \\
+ 12N^2 \chi^2 - 6N \chi^3 + 288aN \mu - 96N^2 \chi - 4N \chi^2 + 2 \chi^3 + 72N \chi \lambda^2 + (768a \mu^4 - 576aN^3 \mu^3 \\
+ 192a^3 \mu^3 - 192a^3 \mu^3 + 96a^2 N^2 \mu^2 - 240a^2 N \chi \mu^2 - 48a^2 \chi^2 \mu^2 - 224a^2 N \mu^2 - 80a^2 \chi \mu^2 \\
+ 48aN^2 \chi \mu - 12aN \chi^2 \mu - 12a \chi^3 \mu + 96a^2 \mu^2 - 112aN \chi \mu - 4a \chi^2 \mu + 6N \chi^2 + 3N \chi^3 \\
+ 48a \chi \mu - 14N \chi^2 + \chi^3 + 6 \chi \lambda) 

(44)

References


Grosso, M., R. Keunings, S. Crescitielli, and P. L. Maffetone, “Prediction of chaotic dynamics of sheared liquid